|
Alamo
|
Namespaces | |
| namespace | Riemann |
Functions | |
| Set::Matrix | CG (Set::Matrix4< 3, Set::Sym::MajorMinor > A, Set::Matrix b, Set::Matrix x=Set::Matrix::Zero(), Set::iMatrix mask=Set::iMatrix::Zero(), int verbose=false) |
| Set::Matrix Solver::Local::CG | ( | Set::Matrix4< 3, Set::Sym::MajorMinor > | A, |
| Set::Matrix | b, | ||
| Set::Matrix | x = Set::Matrix::Zero(), |
||
| Set::iMatrix | mask = Set::iMatrix::Zero(), |
||
| int | verbose = false |
||
| ) |
This is a basic implementation of the conjugate gradient method to solve systems of the form.
\[ \mathbb{A}\mathbf{x} = \mathbf{b}\]
where \(\mathbf{x},\mathbf{b}\in \text{Sym}(GL(3))\), i.e. the set of symmetric 3x3 matrices, and \(\mathbb{A}\) is a 4th order tensor with major and minor symmetries.