Alamo
|
Public Member Functions | |
AMREX_GPU_HOST_DEVICE | Matrix4 () |
AMREX_FORCE_INLINE AMREX_GPU_HOST_DEVICE Scalar & | operator() (const int i, const int j, const int k, const int l) |
Scalar | operator() (const int i, const int j, const int k, const int l) const |
void | Print (std::ostream &) |
bool | contains_nan () const |
Static Public Member Functions | |
static Matrix4< 2, Sym::Full > | Randomize () |
static Matrix4< 2, Sym::Full > | Zero () |
Private Attributes | |
Scalar | data [5] = {NAN,NAN,NAN,NAN,NAN} |
Let the tensor \(\mathbb{C}\in\mathbb{R}^3\times\mathbb{R}^3\times\mathbb{R}^3\times\mathbb{R}^3\) be fully symmetrix such that \(\mathbb{C}_{ijkl}=\mathbb{C}_{\sigma(i,j,k,l)\) where \(\sigma\) is any permutation. Then there are only 5 (2D) or 15(3D) unique elements (rather than 81).
This object acts like a 4D array such that C(i,j,k,l)
returns the corresponding element, but symmetry is always obeyed. This allows the user code to be much prettier.
Definition at line 21 of file Matrix4_Full.H.
|
inline |
Definition at line 25 of file Matrix4_Full.H.
|
inline |
Definition at line 80 of file Matrix4_Full.H.
|
inline |
|
inline |
|
inline |
|
inlinestatic |
|
inlinestatic |
Definition at line 70 of file Matrix4_Full.H.
|
private |
Definition at line 23 of file Matrix4_Full.H.