LCOV - code coverage report
Current view: top level - src/Solver/Local/Riemann - Roe.H (source / functions) Coverage Total Hit
Test: coverage_merged.info Lines: 66.7 % 207 138
Test Date: 2025-04-03 04:02:21 Functions: 100.0 % 5 5

            Line data    Source code
       1              : //
       2              : // This implements the Riemann Roe solver.
       3              : //
       4              : // Notation and algorithm follow the presentation in Section 5.3.3
       5              : // of *Computational Gasdynamics* by Culbert B. Laney (page 88)
       6              : //
       7              : // This solver uses an optional entropy fix
       8              : //   Option 1: chimeracfd method https://chimeracfd.com/programming/gryphon/fluxroe.html
       9              : //   Option 2: Eq. 4.3.67 in *Computational Fluid Dynamics for Engineers and Scientists* by Sreenivas Jayanti
      10              : //
      11              : 
      12              : #ifndef SOLVER_LOCAL_RIEMANN_ROE_H
      13              : #define SOLVER_LOCAL_RIEMANN_ROE_H
      14              : 
      15              : #include "IO/ParmParse.H"
      16              : #include "Solver/Local/Riemann/Riemann.H"
      17              : 
      18              : /// A bunch of solvers
      19              : namespace Solver
      20              : {
      21              : /// Local solvers
      22              : namespace Local
      23              : {
      24              : 
      25              : namespace Riemann
      26              : {
      27              : 
      28              : /// Roe Riemann Solver based on Gas Dynamics - Culbert B. Laney
      29              : class Roe
      30              : {
      31              : public:
      32              : 
      33              : 
      34              :     static constexpr const char* name = "roe";
      35            4 :     Roe (IO::ParmParse &pp, std::string name) 
      36           20 :     {pp_queryclass(name,*this);}
      37              :     Roe (IO::ParmParse &pp) 
      38              :     {pp_queryclass(*this);}
      39            2 :     Roe () 
      40            2 :     {
      41            2 :         IO::ParmParse pp;
      42            6 :         pp_queryclass(*this);
      43            2 :     }
      44              : 
      45              :     int verbose = 0;
      46              :     int entropy_fix = 0;
      47              : 
      48            6 :     static void Parse(Roe & value, IO::ParmParse & pp)
      49              :     {
      50              :         // enable to dump diagnostic data if the roe solver fails
      51           36 :         pp.query_default("verbose", value.verbose, 1);
      52              :         // apply entropy fix if tru
      53           30 :         pp.query_default("entropy_fix", value.entropy_fix, false);
      54              : 
      55            6 :         if (value.entropy_fix == 1)
      56            4 :             Util::Warning(INFO,"The entropy fix is experimental and should be used with caution");
      57            5 :         else if (value.entropy_fix == 2)
      58            4 :             Util::Warning(INFO,"The entropy fix is experimental and should be used with caution. Has previously caused errors with FlowDrivenCavity regression test");
      59            6 :     }
      60              : 
      61     25088016 :     Flux Solve(State lo, State hi, Set::Scalar gamma, Set::Scalar p_ref, Set::Scalar small)
      62              :     {
      63     25088016 :         Set::Scalar rho_L = lo.rho       ,  rho_R = hi.rho;
      64     25088016 :         Set::Scalar Mn_L  = lo.M_normal  ,  Mn_R  = hi.M_normal  ;
      65     25088016 :         Set::Scalar Mt_L  = lo.M_tangent ,  Mt_R  = hi.M_tangent ;
      66     25088016 :         Set::Scalar E_L   = lo.E         ,  E_R   = hi.E         ;
      67              : 
      68              :         // Ensure no negative densities
      69     25088016 :         rho_L = std::max(0.0,rho_L);
      70     25088016 :         rho_R = std::max(0.0,rho_R);
      71              : 
      72              :         // STEP 1: Compute fluid primitives 
      73     25088016 :         Set::Scalar ke_L = 0.5 * (Mn_L * Mn_L /*+ Mt_L * Mt_L*/) / (rho_L+small); // KE per unit volume
      74     25088016 :         Set::Scalar ue_L = E_L - ke_L;                                            // IE per unit volume
      75     25088016 :         Set::Scalar p_L  = (gamma - 1.0) * ue_L + p_ref;                          // pressure
      76     25088016 :         Set::Scalar h_TL = (ke_L + ue_L + p_L) / (rho_L+small);                   // specific stagnation enthalpy (per unit mass)
      77              : 
      78     25088016 :         Set::Scalar ke_R = 0.5 * (Mn_R * Mn_R /*+ Mt_R * Mt_R*/) / (rho_R+small);
      79     25088016 :         Set::Scalar ue_R = E_R - ke_R;
      80     25088016 :         Set::Scalar p_R  = (gamma - 1.0) * ue_R + p_ref;
      81     25088016 :         Set::Scalar h_TR = (ke_R + ue_R + p_R) / (rho_R+small);
      82              : 
      83     25088016 :         Set::Scalar u_L   = Mn_L/(rho_L+small),  u_R   = Mn_R/(rho_R+small);
      84     25088016 :         Set::Scalar v_L   = Mt_L/(rho_L+small),  v_R   = Mt_R/(rho_R+small);
      85              :         
      86              :         //
      87              :         // STEP 2: Compute Roe-averaged quantities
      88              :         // 
      89     25088016 :         Set::Scalar rho_RL  = std::sqrt(rho_L * rho_R);
      90     25088016 :         Set::Scalar u_RL    = (std::sqrt(rho_L) * u_L  + std::sqrt(rho_R) * u_R ) / (std::sqrt(rho_L) + std::sqrt(rho_R) + small);
      91     25088016 :         Set::Scalar h_RL    = (std::sqrt(rho_L) * h_TL + std::sqrt(rho_R) * h_TR) / (std::sqrt(rho_L) + std::sqrt(rho_R) + small);
      92     25088016 :         Set::Scalar a_RL_sq = std::max(0.0,(gamma - 1.0) * (h_RL - 0.5 * u_RL * u_RL));
      93              : 
      94     25088016 :         if (verbose && ((a_RL_sq<0) || (a_RL_sq!=a_RL_sq)))
      95              :         {   
      96            0 :             Util::Message(INFO, "sound speed ", a_RL_sq);
      97              : 
      98            0 :             Util::Message(INFO, "mixed rho ", lo.rho, " ", hi.rho);
      99            0 :             Util::Message(INFO, "mixed Mn ", lo.M_normal, " ", hi.M_normal);
     100            0 :             Util::Message(INFO, "mixed Mt ", lo.M_tangent, " ", hi.M_tangent);
     101            0 :             Util::Message(INFO, "mixed E ", lo.E, " ", hi.E);
     102              : 
     103            0 :             Util::Message(INFO, "fluid rho ", rho_L, " ", rho_R);
     104            0 :             Util::Message(INFO, "fluid Mn ", Mn_L, " ", Mn_R);
     105            0 :             Util::Message(INFO, "fluid Mt ", Mt_L, " ", Mt_R);
     106            0 :             Util::Message(INFO, "fluid E ", E_L, " ", E_R);
     107              : 
     108            0 :             Util::Message(INFO, "fluid rho ", rho_L, " ", rho_R);
     109            0 :             Util::Message(INFO, "fluid u ", u_L, " ", u_R);
     110            0 :             Util::Message(INFO, "fluid v ", v_L, " ", v_R);
     111            0 :             Util::Message(INFO, "fluid p ", p_L, " ", p_R);
     112              :         }
     113    175616112 :         Util::AssertException(INFO,TEST(a_RL_sq==a_RL_sq)," a_RL_sq is nan/inf; (a_RL_sq=", a_RL_sq,")");
     114    175616112 :         Util::AssertException(INFO,TEST(a_RL_sq>=0),      " a_RL_sq is negative; (a_RL_sq=(",a_RL_sq,")");
     115              : 
     116     25088016 :         Set::Scalar a_RL = std::sqrt(a_RL_sq) + small;
     117              : 
     118              :         //
     119              :         // STEP 3: Compute Roe-averaged wave speeds
     120              :         //
     121     25088016 :         Set::Scalar lambda1 = u_RL;          // 5.53a
     122     25088016 :         Set::Scalar lambda2 = u_RL + a_RL;   // 5.53b
     123     25088016 :         Set::Scalar lambda3 = u_RL - a_RL;   // 5.53c
     124              : 
     125              :         //
     126              :         // STEP 4: Compute wave strengths
     127              :         //
     128     25088016 :         Set::Scalar deltarho= rho_R - rho_L;
     129     25088016 :         Set::Scalar deltap  = p_R - p_L;
     130     25088016 :         Set::Scalar deltau  = u_R - u_L;
     131              : 
     132     25088016 :         Set::Scalar deltav1 = deltarho - deltap / (a_RL_sq + small);       // 5.54a
     133     25088016 :         Set::Scalar deltav2 = deltau   + deltap / (rho_RL * a_RL + small); // 5.54b
     134     25088016 :         Set::Scalar deltav3 = deltau   - deltap / (rho_RL * a_RL + small); // 5.54c
     135              : 
     136              :         //
     137              :         // STEP 5: Compute the right eigenvectors
     138              :         //
     139     25088016 :         Set::Scalar r11 = 1.0;
     140     25088016 :         Set::Scalar r12 = u_RL;
     141     25088016 :         Set::Scalar r13 = 0.5*u_RL*u_RL;
     142     25088016 :         Set::Scalar r21 = 0.5*rho_RL/a_RL;
     143     25088016 :         Set::Scalar r22 = 0.5*rho_RL/a_RL * ( u_RL + a_RL );
     144     25088016 :         Set::Scalar r23 = 0.5*rho_RL/a_RL * ( h_RL + a_RL*u_RL );
     145     25088016 :         Set::Scalar r31 = -0.5*rho_RL/a_RL;
     146     25088016 :         Set::Scalar r32 = -0.5*rho_RL/a_RL * ( u_RL - a_RL );
     147     25088016 :         Set::Scalar r33 = -0.5*rho_RL/a_RL * ( h_RL - a_RL*u_RL );
     148              : 
     149              :         //
     150              :         // STEP 6: Compute solution - not needed since fluxes will be computed in STEP 7
     151              :         //
     152              : 
     153              :         //
     154              :         // ROE ENTROPY FIX (Source cited in header comments)
     155              :         //
     156     25088016 :         if (entropy_fix == 1) { // chimeracfd
     157      8192000 :             lambda1 = fabs(lambda1);
     158      8192000 :             lambda2 = fabs(lambda2);
     159      8192000 :             lambda3 = fabs(lambda3);
     160      8192000 :             if ( lambda1 < deltau ) lambda1 = 0.5*(lambda1*lambda1 + deltau*deltau)/deltau;
     161      8192000 :             if ( lambda2 < deltau ) lambda2 = 0.5*(lambda2*lambda2 + deltau*deltau)/deltau;
     162      8192000 :             if ( lambda3 < deltau ) lambda3 = 0.5*(lambda3*lambda3 + deltau*deltau)/deltau;
     163              :         }
     164     16896016 :         else if (entropy_fix == 2) { // Jayanti
     165      8192000 :             Set::Scalar a_L = std::sqrt(gamma * p_L / (rho_L + small)); // sound speed
     166      8192000 :             Set::Scalar a_R = std::sqrt(gamma * p_R / (rho_R + small));
     167      8192000 :             Set::Scalar lambda1_L = u_L;         Set::Scalar lambda1_R = u_R; // eigenvalues
     168      8192000 :             Set::Scalar lambda2_L = u_L + a_L;   Set::Scalar lambda2_R = u_R + a_R;
     169      8192000 :             Set::Scalar lambda3_L = u_L - a_L;   Set::Scalar lambda3_R = u_R - a_R;
     170      8192000 :             Set::Scalar fix1 = std::max(0.0, std::max(lambda1 - lambda1_L, lambda1_R - lambda1));
     171      8192000 :             Set::Scalar fix2 = std::max(0.0, std::max(lambda2 - lambda2_L, lambda2_R - lambda2));
     172      8192000 :             Set::Scalar fix3 = std::max(0.0, std::max(lambda3 - lambda3_L, lambda3_R - lambda3));
     173      8192000 :             if ( lambda1 < fix1 ) lambda1 = fix1;
     174      8192000 :             if ( lambda2 < fix2 ) lambda2 = fix2;
     175      8192000 :             if ( lambda3 < fix3 ) lambda3 = fix3;
     176              :         }
     177              : 
     178              :         //
     179              :         // STEP 7: Compute fluxes
     180              :         //
     181     25088016 :         Flux fl;
     182              :         
     183     25088016 :         fl.mass = (0.5*(rho_L*u_L + rho_R*u_R) - 0.5*(
     184     25088016 :                         r11*fabs(lambda1)*deltav1 +
     185     25088016 :                         r21*fabs(lambda2)*deltav2 +
     186     25088016 :                         r31*fabs(lambda3)*deltav3)
     187              :             );
     188              :         
     189     25088016 :         if (fl.mass != fl.mass)
     190              :         {
     191            0 :             if (verbose)
     192              :             {
     193            0 :                 Util::ParallelMessage(INFO,"hi ", hi);
     194            0 :                 Util::ParallelMessage(INFO,"lo ", lo);
     195            0 :                 Util::ParallelMessage(INFO,"rho_R ", rho_R);
     196            0 :                 Util::ParallelMessage(INFO,"rho_L ", rho_L);
     197            0 :                 Util::ParallelMessage(INFO,"rho_RL ", rho_RL); 
     198            0 :                 Util::ParallelMessage(INFO,"u_R ", u_R);
     199            0 :                 Util::ParallelMessage(INFO,"u_L ", u_L);
     200            0 :                 Util::ParallelMessage(INFO,"u_RL ", u_RL); 
     201            0 :                 Util::ParallelMessage(INFO,"a_RL ", a_RL);
     202            0 :                 Util::ParallelMessage(INFO,"lambda1 ", lambda1); 
     203            0 :                 Util::ParallelMessage(INFO,"lambda2 ", lambda2); 
     204            0 :                 Util::ParallelMessage(INFO,"lambda3 ", lambda3); 
     205            0 :                 Util::ParallelMessage(INFO,"deltav1 ", deltav1); 
     206            0 :                 Util::ParallelMessage(INFO,"deltav2 ", deltav2);
     207            0 :                 Util::ParallelMessage(INFO,"deltav3 ", deltav3);
     208              :             }
     209            0 :             Util::Exception(INFO);
     210              :         }
     211              : 
     212              : 
     213     25088016 :         fl.momentum_normal = ( 0.5*(rho_L*u_L*u_L + p_L + rho_R*u_R*u_R + p_R) - 0.5*(
     214     25088016 :                                     r12*fabs(lambda1)*deltav1 +
     215     25088016 :                                     r22*fabs(lambda2)*deltav2 +
     216     25088016 :                                     r32*fabs(lambda3)*deltav3)
     217              :             );
     218              : 
     219              : 
     220     25088016 :         fl.energy = (   0.5*(u_L*(ke_L + p_L + ue_L) + u_R*(ke_R + p_R + ue_R)) - 0.5*
     221              :                         (
     222     25088016 :                             r13*fabs(lambda1)*deltav1 +
     223     25088016 :                             r23*fabs(lambda2)*deltav2 +
     224     25088016 :                             r33*fabs(lambda3)*deltav3)
     225              :             );
     226              : 
     227              :         //
     228              :         // (Update the tangential momentum flux)
     229              :         //
     230     25088016 :         fl.momentum_tangent = 0.5 * (rho_L * u_L * v_L + rho_R * u_R * v_R);
     231              : 
     232     50176032 :         return fl;
     233              :     }
     234              : 
     235              : 
     236            2 :     static int Test()
     237              :     {
     238            2 :         Roe solver;
     239              :         
     240              : 
     241            2 :         int failed = 0;
     242              : 
     243            2 :         Set::Scalar gamma = 1.4;
     244            2 :         Set::Scalar pref = 10.0;
     245            2 :         Set::Scalar small = 1E-10;
     246              : 
     247              :         // Test 1: Tangential Velocity Difference - No Normal Flux
     248              :         try {
     249            2 :             State left  (1.0, 1.0, 0.0, 1.0);
     250            2 :             State center(1.0, 1.0, 1.0, 1.0);
     251            2 :             State right (1.0, 1.0, 2.0, 1.0);
     252            2 :             Flux fluxlo = solver.Solve(center, right, gamma, pref, small);
     253            2 :             Flux fluxhi = solver.Solve(left, center,  gamma, pref, small);
     254              : 
     255            2 :             if (fabs(fluxhi.mass - fluxlo.mass) > 1E-10
     256            2 :                 || fabs(fluxhi.momentum_normal - fluxlo.momentum_normal) > 1E-10
     257            2 :                 || fabs(fluxhi.energy - fluxlo.energy) > 1E-10) {
     258            0 :                 Util::Warning(INFO,   "left:    ",left);
     259            0 :                 Util::Warning(INFO,   "center:  ",center);
     260            0 :                 Util::Warning(INFO,   "right:   ",right);
     261            0 :                 Util::Warning(INFO,   "Fluxlo:  ",fluxlo);
     262            0 :                 Util::Warning(INFO,   "Fluxhi:  ",fluxhi);
     263            0 :                 Util::Exception(INFO, "Tangential velocity difference incorrectly affecting normal flux.");
     264              :             }
     265            4 :             Util::Test::SubMessage("Test 1: Tangential velocity should induce no normal flux",0);
     266            0 :         } catch (const std::runtime_error& e)
     267              :         {
     268            0 :             failed++;
     269            0 :             Util::Test::SubMessage("Test 1: Tangential velocity should induce no normal flux",1);
     270            0 :         }
     271              : 
     272              :         // Test 2: Pure Transverse Velocity Difference
     273              :         try {
     274            2 :             State left  (1.0, 0.0, 0.0, 1.0);
     275            2 :             State center(1.0, 0.0, 1.0, 1.0);
     276            2 :             State right (1.0, 0.0, 2.0, 1.0);
     277            2 :             Flux fluxlo = solver.Solve(left, center,  gamma, pref, small);
     278            2 :             Flux fluxhi = solver.Solve(center, right, gamma, pref, small);
     279            2 :             if (fabs(fluxhi.mass - fluxlo.mass) > 1E-10
     280            2 :                 || fabs(fluxhi.momentum_normal - fluxlo.momentum_normal) > 1E-10
     281            2 :                 || fabs(fluxhi.energy - fluxlo.energy) > 1E-10) {
     282            0 :                 Util::Warning(INFO,   "left:  ",left);
     283            0 :                 Util::Warning(INFO,   "center: ",center);
     284            0 :                 Util::Warning(INFO,   "right: ",right);
     285            0 :                 Util::Warning(INFO,   "Fluxhi:  ",fluxhi);
     286            0 :                 Util::Warning(INFO,   "Fluxlo:  ",fluxlo);
     287            0 :                 Util::Exception(INFO, "Pure transverse velocity difference affecting normal flux.");
     288              :             }
     289            4 :             Util::Test::SubMessage("Test 2: Pure transverse velocity difference",0);
     290            0 :         } catch (const std::runtime_error& e)
     291              :         {
     292            0 :             failed++;
     293            0 :             Util::Test::SubMessage("Test 2: Pure transverse velocity difference",1);
     294            0 :         }
     295              : 
     296              :         // Test 3: Symmetry Test (no flux across identical states)
     297              :         try {
     298            2 :             State left(1.0, 0.0, 0.0, 1.0);
     299            2 :             State center(1.0, 0.0, 0.0, 1.0);
     300            2 :             State right(1.0, 0.0, 0.0, 1.0);
     301            2 :             Flux fluxhi = solver.Solve(center, right, gamma, pref, small);
     302            2 :             Flux fluxlo = solver.Solve(left, center, gamma, pref, small);
     303            2 :             if (fabs(fluxhi.mass - fluxlo.mass) > 1E-10 // no change in mass flux
     304            2 :                 || fabs(fluxhi.momentum_normal - fluxlo.momentum_normal) > 1E-10 // no change in momentum flux
     305            2 :                 || fabs(fluxhi.momentum_tangent) > 1E-10 // zero tangent flux
     306            2 :                 || fabs(fluxlo.momentum_tangent) > 1E-10 // zero tangent flux
     307            2 :                 || fabs(fluxhi.energy-fluxlo.energy) > 1E-10 // no change in energy flux
     308              :                 ) {
     309            0 :                 Util::Warning(INFO,   "left:  ",left);
     310            0 :                 Util::Warning(INFO,   "right: ",right);
     311            0 :                 Util::Warning(INFO,   "Fluxhi:  ",fluxhi);
     312            0 :                 Util::Warning(INFO,   "Fluxlo:  ",fluxlo);
     313            0 :                 Util::Exception(INFO, "Symmetric states should result in zero flux.");
     314              :             }
     315            4 :             Util::Test::SubMessage("Test 3: Constant states induces no flux difference",0);
     316            0 :         } catch (const std::runtime_error& e)
     317              :         {
     318            0 :             failed++;
     319            0 :             Util::Test::SubMessage("Test 3: Constant states induces no flux difference",1);
     320            0 :         }
     321              : 
     322              :         // Test 4: Uniform Flow Test (no flux across uniform flow)
     323              :         try {
     324            2 :             State left (1.0, 1.0, 0.5, 1.0);
     325            2 :             State center(1.0, 1.0, 0.5, 1.0);
     326            2 :             State right (1.0, 1.0, 0.5, 1.0);
     327            2 :             Flux fluxhi = solver.Solve(center, right, gamma, pref, small);
     328            2 :             Flux fluxlo = solver.Solve(left, center, gamma, pref, small);
     329            2 :             if (fabs(fluxhi.mass - fluxlo.mass) > 1E-10 ||
     330            2 :                 fabs(fluxhi.momentum_normal - fluxlo.momentum_normal) > 1E-10 ||
     331            2 :                 fabs(fluxhi.energy - fluxlo.energy) > 1E-10) {
     332            0 :                 Util::Warning(INFO,   "left:   ",left);
     333            0 :                 Util::Warning(INFO,   "center: ",center);
     334            0 :                 Util::Warning(INFO,   "right:  ",right);
     335            0 :                 Util::Warning(INFO,   "Fluxlo: ",fluxlo);
     336            0 :                 Util::Warning(INFO,   "Fluxhi: ",fluxhi);
     337            0 :                 Util::Exception(INFO, "Uniform flow should result in no flux.");
     338              :             }
     339            4 :             Util::Test::SubMessage("Test 4: Uniform flow should maintain constant flux",0);
     340            0 :         } catch (const std::runtime_error& e)
     341              :         {
     342            0 :             failed++;
     343            0 :             Util::Test::SubMessage("Test 4: Uniform flow should maintain constant flux",1);
     344            0 :         }
     345              : 
     346            2 :         return failed;
     347              :     }
     348              : };
     349              : }
     350              : }
     351              : }
     352              : 
     353              : #endif
        

Generated by: LCOV version 2.0-1