LCOV - code coverage report
Current view: top level - src/Model/Interface/GB - GB.H (source / functions) Coverage Total Hit
Test: coverage_merged.info Lines: 36.1 % 61 22
Test Date: 2025-04-03 04:02:21 Functions: 36.4 % 11 4

            Line data    Source code
       1              : #ifndef MODEL_INTERFACE_GB_H
       2              : #define MODEL_INTERFACE_GB_H
       3              : 
       4              : #include <AMReX.H>
       5              : #include <AMReX_AmrCore.H>
       6              : 
       7              : #include <eigen3/Eigen/Eigenvalues>
       8              : 
       9              : #include <iostream>
      10              : #include <fstream>
      11              : 
      12              : namespace Model
      13              : {
      14              : namespace Interface
      15              : {
      16              : namespace GB
      17              : {
      18              : class GB
      19              : {
      20              : public:
      21        12224 :     GB() {};
      22        12224 :     virtual ~GB() {};
      23              :     virtual Set::Scalar W(const Set::Scalar theta) const = 0;
      24              :     virtual Set::Scalar DW(const Set::Scalar theta) const = 0;
      25              :     virtual Set::Scalar DDW(const Set::Scalar theta) const = 0;
      26      1362712 :     virtual Set::Scalar W(const Set::Vector& a_n) const { return W(atan2(a_n(1), a_n(0))); };
      27            0 :     virtual Set::Scalar DW(const Set::Vector&, const Set::Vector&) const { return NAN; };
      28            0 :     virtual Set::Scalar DDW(const Set::Vector&, const Set::Vector&) const { return NAN; };
      29              : 
      30              :     void ExportToFile(std::string filename, amrex::Real dTheta)
      31              :     {
      32              :         std::ofstream outFile;
      33              :         outFile.open(filename);
      34              : 
      35              :         for (amrex::Real theta = 0; theta < 2 * pi; theta = theta + dTheta)
      36              :         {
      37              :             outFile << theta << " " << W(theta) << std::endl;
      38              :         }
      39              :         outFile.close();
      40              :     }
      41              : 
      42              :     enum Regularization { Wilhelm, K23 };
      43              : 
      44              :     // Return anisotropic driving force, regularization
      45              :     std::tuple<Set::Scalar, Set::Scalar>
      46      1362712 :         DrivingForce(const Set::Vector& Deta, const Set::Matrix& DDeta, const Set::Matrix4<AMREX_SPACEDIM, Set::Sym::Full>& DDDDeta)
      47              :     {
      48              : #if AMREX_SPACEDIM == 2
      49      1362712 :         Set::Scalar Theta = atan2(Deta(1), Deta(0));
      50      1362712 :         Set::Scalar sigma = /*pf.l_gb*0.75**/W(Theta);
      51      1362712 :         Set::Scalar Dsigma = /*pf.l_gb*0.75**/DW(Theta);
      52      1362712 :         Set::Scalar DDsigma = /*pf.l_gb*0.75**/DDW(Theta);
      53      1362712 :         Set::Scalar sinTheta = sin(Theta);
      54      1362712 :         Set::Scalar cosTheta = cos(Theta);
      55      1362712 :         Set::Scalar sin2Theta = sinTheta * sinTheta;
      56      1362712 :         Set::Scalar cos2Theta = cosTheta * cosTheta;
      57      1362712 :         Set::Scalar cosThetasinTheta = cosTheta * sinTheta;
      58              : 
      59              :         Set::Scalar boundary_term =
      60      1362712 :             -(sigma * DDeta.trace() +
      61      1362712 :                 Dsigma * (cos(2.0 * Theta) * DDeta(0, 1) + 0.5 * sin(2.0 * Theta) * (DDeta(1, 1) - DDeta(0, 0))) +
      62      1362712 :                 0.5 * DDsigma * (sin2Theta * DDeta(0, 0) - 2. * cosThetasinTheta * DDeta(0, 1) + cos2Theta * DDeta(1, 1)));
      63              : 
      64              :         Set::Scalar curvature_term =
      65      1362712 :             DDDDeta(0, 0, 0, 0) * (sin2Theta * sin2Theta) +
      66      1362712 :             DDDDeta(0, 0, 0, 1) * (4.0 * sin2Theta * cosThetasinTheta) +
      67      1362712 :             DDDDeta(0, 0, 1, 1) * (6.0 * sin2Theta * cos2Theta) +
      68      1362712 :             DDDDeta(0, 1, 1, 1) * (4.0 * cosThetasinTheta * cos2Theta) +
      69      1362712 :             DDDDeta(1, 1, 1, 1) * (cos2Theta * cos2Theta);
      70      2725424 :         return std::make_tuple(boundary_term, curvature_term);
      71              : 
      72              : #elif AMREX_SPACEDIM == 3
      73              : 
      74            0 :         Set::Vector normal = Deta / Deta.lpNorm<2>();
      75              : 
      76              :         // GRAHM-SCHMIDT PROCESS to get orthonormal basis
      77            0 :         const Set::Vector e1(1, 0, 0), e2(0, 1, 0), e3(0, 0, 1);
      78            0 :         Set::Vector _t2, _t3;
      79            0 :         if (fabs(normal(0)) > fabs(normal(1)) && fabs(normal(0)) > fabs(normal(2)))
      80              :         {
      81            0 :             _t2 = e2 - normal.dot(e2) * normal; _t2 /= _t2.lpNorm<2>();
      82            0 :             _t3 = e3 - normal.dot(e3) * normal - _t2.dot(e3) * _t2; _t3 /= _t3.lpNorm<2>();
      83              :         }
      84            0 :         else if (fabs(normal(1)) > fabs(normal(0)) && fabs(normal(1)) > fabs(normal(2)))
      85              :         {
      86            0 :             _t2 = e1 - normal.dot(e1) * normal; _t2 /= _t2.lpNorm<2>();
      87            0 :             _t3 = e3 - normal.dot(e3) * normal - _t2.dot(e3) * _t2; _t3 /= _t3.lpNorm<2>();
      88              :         }
      89              :         else
      90              :         {
      91            0 :             _t2 = e1 - normal.dot(e1) * normal; _t2 /= _t2.lpNorm<2>();
      92            0 :             _t3 = e2 - normal.dot(e2) * normal - _t2.dot(e2) * _t2; _t3 /= _t3.lpNorm<2>();
      93              :         }
      94              : 
      95              :         // Compute Hessian projected into tangent space (spanned by _t1,_t2)
      96            0 :         Eigen::Matrix2d DDeta2D;
      97            0 :         DDeta2D <<
      98            0 :             _t2.dot(DDeta * _t2), _t2.dot(DDeta * _t3),
      99            0 :             _t3.dot(DDeta * _t2), _t3.dot(DDeta * _t3);
     100            0 :         Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> eigensolver(2);
     101            0 :         eigensolver.computeDirect(DDeta2D);
     102            0 :         Eigen::Matrix2d eigenvecs = eigensolver.eigenvectors();
     103              : 
     104              :         // Compute tangent vectors embedded in R^3
     105            0 :         Set::Vector t2 = _t2 * eigenvecs(0, 0) + _t3 * eigenvecs(0, 1),
     106            0 :             t3 = _t2 * eigenvecs(1, 0) + _t3 * eigenvecs(1, 1);
     107              : 
     108              :         // Compute components of second Hessian in t2,t3 directions
     109            0 :         Set::Scalar DH2 = 0.0, DH3 = 0.0;
     110            0 :         Set::Scalar DH23 = 0.0;
     111            0 :         for (int p = 0; p < 3; p++)
     112            0 :             for (int q = 0; q < 3; q++)
     113            0 :                 for (int r = 0; r < 3; r++)
     114            0 :                     for (int s = 0; s < 3; s++)
     115              :                     {
     116            0 :                         DH2 += DDDDeta(p, q, r, s) * t2(p) * t2(q) * t2(r) * t2(s);
     117            0 :                         DH3 += DDDDeta(p, q, r, s) * t3(p) * t3(q) * t3(r) * t3(s);
     118            0 :                         DH23 += DDDDeta(p, q, r, s) * t2(p) * t2(q) * t3(r) * t3(s);
     119              :                     }
     120              : 
     121            0 :         Set::Scalar sigma = W(normal);
     122            0 :         Set::Scalar DDK2 = DDW(normal, _t2);
     123            0 :         Set::Scalar DDK3 = DDW(normal, _t3);
     124              : 
     125              :         // GB energy anisotropy term
     126            0 :         Set::Scalar gbenergy_df = -sigma * DDeta.trace() - DDK2 * DDeta2D(0, 0) - DDK3 * DDeta2D(1, 1);
     127              : 
     128              :         // Second order curvature term
     129            0 :         Set::Scalar reg_df = NAN;
     130            0 :         if (regularization == Regularization::Wilhelm) reg_df = DH2 + DH3 + 2.0 * DH23;
     131            0 :         else if (regularization == Regularization::K23) reg_df = DH2 + DH3;
     132              : 
     133            0 :         return std::make_tuple(gbenergy_df, reg_df);
     134              : 
     135              : #endif
     136              :     }
     137              : 
     138              : 
     139              : protected:
     140              :     static constexpr amrex::Real pi = 3.14159265359;
     141              :     Regularization regularization = Regularization::Wilhelm;
     142              : };
     143              : }
     144              : }
     145              : }
     146              : 
     147              : #endif
        

Generated by: LCOV version 2.0-1