LCOV - code coverage report
Current view: top level - src/Integrator - HeatConduction.H (source / functions) Coverage Total Hit
Test: coverage_merged.info Lines: 91.7 % 60 55
Test Date: 2025-08-05 17:56:56 Functions: 90.9 % 11 10

            Line data    Source code
       1              : //
       2              : // This implements a basic heat conduction method in Alamo.
       3              : // The partial differential equation to be solved is
       4              : //
       5              : // .. math::
       6              : //
       7              : //    \frac{\partial T}{\partial t} = \alpha\,\Delta T
       8              : //
       9              : // where :math:`T` is temperature, :math:`t` is time, and :math:`alpha` 
      10              : // is the thermal diffusivity.
      11              : // Integration is performed explicitly in time using forward Euler, and
      12              : // differentiation is performed using the finite difference method.
      13              : //
      14              : 
      15              : #ifndef INTEGRATOR_HEATCONDUCTION_H // Include guards
      16              : #define INTEGRATOR_HEATCONDUCTION_H // 
      17              : 
      18              : // AMReX Includes
      19              : #include "AMReX_Array4.H"
      20              : #include "AMReX_GpuComplex.H"
      21              : #include "AMReX_MFIter.H"
      22              : #include <AMReX.H>
      23              : #include <AMReX_ParallelDescriptor.H>
      24              : #include <AMReX_ParmParse.H>
      25              : #ifdef ALAMO_FFT
      26              : #include <AMReX_FFT.H>
      27              : #endif
      28              : 
      29              : // Alamo Includes
      30              : #include "Set/Base.H"
      31              : #include "Integrator.H"
      32              : #include "IO/ParmParse.H"
      33              : #include "Integrator/Integrator.H"
      34              : #include "BC/Constant.H"
      35              : #include "BC/Expression.H"
      36              : #include "IC/IC.H"
      37              : #include "IC/Sphere.H"
      38              : #include "IC/Constant.H"
      39              : #include "IC/Expression.H"
      40              : #include "Numeric/Stencil.H"
      41              : 
      42              : namespace Integrator
      43              : {
      44              : class HeatConduction : virtual public Integrator
      45              : {
      46              : public:
      47              :     static constexpr const char* name = "heatconduction";
      48              : 
      49              : 
      50              :     // Empty constructor
      51            2 :     HeatConduction(int a_nghost = 2) : 
      52              :         Integrator(),
      53            2 :         number_of_ghost_cells(a_nghost)
      54            2 :     {}
      55              : 
      56              :     // Constructor that triggers parse
      57            2 :     HeatConduction(IO::ParmParse& pp) : HeatConduction()
      58              :     {
      59            2 :         Parse(*this, pp);
      60            2 :     }
      61              : 
      62            4 :     virtual ~HeatConduction()
      63            2 :     {
      64            2 :         delete ic;
      65            2 :         delete bc;
      66            4 :     }
      67              : 
      68              :     // The Parse function initializes the HeatConduction object using
      69              :     // a parser, pp. 
      70              :     // Note that this is a static function, which means it does not have
      71              :     // direct access to member variables. Instead, it initializes the variables
      72              :     // inside the argument, "value", and so all references to member items are
      73              :     // prefixed by "value."
      74            2 :     static void Parse(HeatConduction& value, IO::ParmParse& pp)
      75              :     {
      76              :         // Diffusion coefficient :math:`\alpha`.
      77              :         //   *This is an example of a required input variable -
      78              :         //    - program will terminate unless it is provided.*
      79            4 :         pp.query_required(  "heat.alpha", value.alpha,
      80              :                             Unit::ThermalDiffusivity());
      81              :         
      82              :         // Criterion for mesh refinement.
      83              :         //   *This is an example of a default input variable.
      84              :         //    The default value is provided here, not in the 
      85              :         //    definition of the variable.*
      86            8 :         pp.query_default(   "heat.refinement_threshold", value.refinement_threshold, "0.01_K", 
      87              :                             Unit::Temperature());
      88              : 
      89              :         // Initial condition type.
      90            4 :         pp.select_default<IC::Constant,IC::Sphere,IC::Expression>(  "ic",value.ic,value.geom, 
      91            2 :                                                                     Unit::Temperature());
      92              : 
      93              :         // Select BC object for temperature
      94            4 :         pp.select_default<BC::Constant,BC::Expression>( "bc.temp",value.bc,1,
      95            2 :                                                         Unit::Temperature());
      96              : 
      97              :         // Select between using a realspace solve or the spectral method
      98            8 :         pp.query_validate("method",value.method,{"realspace","spectral"});
      99              : 
     100              :         // Register the temperature and old temperature fields.
     101              :         // temp_mf and temp_old_mf are defined near the bottom of this Header file.
     102            8 :         value.RegisterNewFab(   value.temp_mf, value.bc, value.number_of_components, 
     103            2 :                                 value.number_of_ghost_cells, "Temp", true);
     104            2 :         if (value.method == "realspace")
     105              :         {
     106            8 :             value.RegisterNewFab(   value.temp_old_mf, value.bc, value.number_of_components, 
     107            2 :                                     value.number_of_ghost_cells, "Temp_old", false);
     108              :         }
     109            2 :     }
     110              : 
     111              : protected:
     112              : 
     113              :     // Use the ic object to initialize the temperature field
     114            8 :     void Initialize(int lev)
     115              :     {
     116            8 :         ic->Initialize(lev, temp_mf);
     117            8 :         if (method == "realspace") ic->Initialize(lev, temp_old_mf);
     118            8 :     }
     119              : 
     120              :     // Integrate the heat equation
     121        15000 :     void Advance(int lev, Set::Scalar time, Set::Scalar dt)
     122              :     {
     123              :         // If we are solving using the spectral method, go there instead.
     124        15000 :         if (method == "spectral")
     125              :         {
     126            0 :             AdvanceSpectral(lev,time,dt);
     127            0 :             return;
     128              :         }
     129              : 
     130              :         // Swap the old temp fab and the new temp fab so we use
     131              :         // the new one.
     132        15000 :         std::swap(*temp_mf[lev], *temp_old_mf[lev]);
     133              : 
     134              :         // Get the cell size corresponding to this level
     135        15000 :         const Set::Scalar* DX = geom[lev].CellSize();
     136              : 
     137              :         // Iterate over all of the patches on this level
     138       243240 :         for (amrex::MFIter mfi(*temp_mf[lev], amrex::TilingIfNotGPU()); mfi.isValid(); ++mfi)
     139              :         {
     140              :             // Get the box (index dimensions) for this patch
     141       228240 :             const amrex::Box &bx = mfi.tilebox();
     142              : 
     143              :             // Get an array-accessible handle to the data on this patch.
     144       228240 :             Set::Patch<const Set::Scalar>  temp_old = temp_old_mf.Patch(lev,mfi);
     145       228240 :             Set::Patch<Set::Scalar>        temp     = temp_mf.Patch(lev,mfi);
     146              : 
     147              :             // Iterate over the grid on this patch
     148       228240 :             amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     149              :             {
     150              :                 // Do the physics!
     151              :                 // Note that Numeric::Laplacian is an inlined function so there is no overhead.
     152              :                 // You can calculate the derivatives yourself if you want.
     153     83033280 :                 temp(i, j, k) = temp_old(i, j, k) + dt * alpha * Numeric::Laplacian(temp_old, i, j, k, 0, DX);
     154     27677760 :             });
     155        15000 :         }
     156              :     }
     157              : 
     158              : 
     159              : #ifdef ALAMO_FFT
     160              :     void
     161              :     AdvanceSpectral(int lev, Set::Scalar /*time*/, Set::Scalar dt)
     162              :     {
     163              :         Util::Assert(INFO,TEST(lev == 0), "Only single level currently supported");
     164              :         
     165              :         amrex::Box const & domain = this->geom[lev].Domain();
     166              : 
     167              :         amrex::FFT::R2C my_fft(this->geom[lev].Domain());
     168              :         auto const& [cba, cdm] = my_fft.getSpectralDataLayout();
     169              :         amrex::FabArray<amrex::BaseFab<amrex::GpuComplex<Set::Scalar> > > Temp_hat(cba, cdm, 1, 0);
     170              :         my_fft.forward(*temp_mf[lev], Temp_hat);
     171              : 
     172              :         const Set::Scalar* DX = geom[lev].CellSize();
     173              : 
     174              :         Set::Scalar
     175              :             AMREX_D_DECL(
     176              :                 pi_Lx = 2.0 * Set::Constant::Pi / geom[lev].Domain().length(0) / DX[0],
     177              :                 pi_Ly = 2.0 * Set::Constant::Pi / geom[lev].Domain().length(1) / DX[1],
     178              :                 pi_Lz = 2.0 * Set::Constant::Pi / geom[lev].Domain().length(2) / DX[2]);
     179              : 
     180              :         Set::Scalar scaling = 1.0 / geom[lev].Domain().d_numPts();
     181              : 
     182              :         for (amrex::MFIter mfi(Temp_hat, amrex::TilingIfNotGPU()); mfi.isValid(); ++mfi)
     183              :         {
     184              :             const amrex::Box &bx = mfi.tilebox();
     185              :             amrex::Array4<amrex::GpuComplex<Set::Scalar>> const & T_hat =  Temp_hat.array(mfi);
     186              :             amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int m, int n, int p) {
     187              : 
     188              :                 AMREX_D_TERM(
     189              :                     Set::Scalar k1 = m * pi_Lx;,
     190              :                     Set::Scalar k2 = (n < domain.length(1)/2 ? n * pi_Ly : (n - domain.length(1)) * pi_Ly);,
     191              :                     Set::Scalar k3 = (p < domain.length(2)/2 ? p * pi_Lz : (p - domain.length(2)) * pi_Lz););
     192              : 
     193              :                 Set::Scalar lap = AMREX_D_TERM(k1 * k1, + k2 * k2, + k3*k3);
     194              : 
     195              :                 Set::Scalar factor = exp( - alpha * dt * lap); 
     196              :                 T_hat(m,n,p) *= factor*scaling;
     197              :             });
     198              :         }
     199              : 
     200              :         my_fft.backward(Temp_hat, *temp_mf[lev]);
     201              :     }
     202              : #else
     203              :     void
     204            0 :     AdvanceSpectral(int, Set::Scalar, Set::Scalar)
     205              :     {
     206            0 :         Util::Abort(INFO,"Alamo must be configured with --fft");
     207            0 :     }
     208              : #endif
     209              : 
     210              : 
     211              :     // Tag cells for mesh refinement based on temperature gradient
     212         1112 :     void TagCellsForRefinement(int lev, amrex::TagBoxArray& a_tags, Set::Scalar /*time*/, int /*ngrow*/)
     213              :     {
     214         1112 :         if (method=="spectral") return;
     215              : 
     216              :         // Get cell dimensions as done above.
     217         1112 :         const Set::Scalar* DX = geom[lev].CellSize();
     218              :         // Calculate the diagonal.
     219         1112 :         Set::Scalar dr = sqrt(AMREX_D_TERM(DX[0] * DX[0], +DX[1] * DX[1], +DX[2] * DX[2]));
     220              : 
     221              :         // Iterate over the patches on this level
     222        10388 :         for (amrex::MFIter mfi(*temp_mf[lev], amrex::TilingIfNotGPU()); mfi.isValid(); ++mfi)
     223              :         {
     224              :             // Get the box and handles as done above.
     225         9276 :             const amrex::Box& bx = mfi.tilebox();
     226         9276 :             amrex::Array4<char>         const& tags = a_tags.array(mfi);
     227         9276 :             amrex::Array4<Set::Scalar>  const& temp = (*temp_mf[lev]).array(mfi);
     228              : 
     229              :             // Iterate over the grid as done above.
     230         9276 :             amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     231              :             {
     232              :                 // Calculate the temperature gradient.
     233       656496 :                 Set::Vector grad = Numeric::Gradient(temp, i, j, k, 0, DX);
     234              : 
     235              :                 // Is the gradient * cell_size too big? If so, then
     236              :                 // mark this cell as needing refinement.
     237       656496 :                 if (grad.lpNorm<2>() * dr > refinement_threshold)
     238      1112956 :                     tags(i, j, k) = amrex::TagBox::SET;
     239       656496 :             });
     240         1112 :         }
     241              :     }
     242              : 
     243              : protected:
     244              :     Set::Field<Set::Scalar> temp_mf;         // Temperature field variable (current timestep)
     245              :     Set::Field<Set::Scalar> temp_old_mf;     // Temperature field variable (previous timestep)
     246              : 
     247              :     std::string method; // determine whether to use realspace or spectral method
     248              : 
     249              : private:
     250              : 
     251              :     //
     252              :     // Definition of parameters set only at instantiation by
     253              :     // constructors. 
     254              :     //
     255              :     const int number_of_components = 1;      // Number of components
     256              :     const int number_of_ghost_cells = 2;     // Number of ghost cells
     257              : 
     258              :     //
     259              :     // Definition of user-determined variables.
     260              :     //
     261              :     // Instantiate all variables to NAN if possible.
     262              :     // Default values may be set in Parse using query_default.
     263              :     //
     264              : 
     265              :     Set::Scalar alpha = NAN;                 // Thermal diffusivity
     266              :     Set::Scalar refinement_threshold = NAN ; // Criterion for cell refinement
     267              : 
     268              :     //
     269              :     // Definition of user-determined pointer variables.
     270              :     //
     271              :     // These should be set to nullptr. Make sure that they are deleted
     272              :     // in the ~HeatConduction destructor.
     273              :     //
     274              : 
     275              :     IC::IC<Set::Scalar>* ic = nullptr;                    // Object used to initialize temperature field
     276              :     BC::BC<Set::Scalar>* bc = nullptr;       // Object used to update temp field boundary ghost cells
     277              : };
     278              : } // namespace Integrator
     279              : #endif
        

Generated by: LCOV version 2.0-1