LCOV - code coverage report
Current view: top level - src/Integrator - Flame.cpp (source / functions) Coverage Total Hit
Test: coverage_merged.info Lines: 69.6 % 441 307
Test Date: 2025-04-03 04:02:21 Functions: 65.5 % 29 19

            Line data    Source code
       1              : #include "Flame.H"
       2              : #include "IO/ParmParse.H"
       3              : #include "BC/Constant.H"
       4              : #include "Numeric/Stencil.H"
       5              : #include "IC/Laminate.H"
       6              : #include "IC/Constant.H"
       7              : #include "IC/PSRead.H"
       8              : #include "Numeric/Function.H"
       9              : #include "IC/Expression.H"
      10              : #include "IC/BMP.H"
      11              : #include "IC/PNG.H"
      12              : #include "Base/Mechanics.H"
      13              : 
      14              : #include <cmath>
      15              : 
      16              : namespace Integrator
      17              : {
      18              : 
      19            3 : Flame::Flame() : Base::Mechanics<model_type>() {}
      20              : 
      21            3 : Flame::Flame(IO::ParmParse& pp) : Flame()
      22              : {
      23            9 :     pp_queryclass(*this);
      24            3 : }
      25              : 
      26              : // [parser]
      27              : void
      28            3 : Flame::Parse(Flame& value, IO::ParmParse& pp)
      29              : {
      30              :     BL_PROFILE("Integrator::Flame::Flame()");
      31              :     {
      32              :         // Whether to include extra fields (such as mdot, etc) in the plot output
      33           18 :         pp_query_default("plot_field",value.plot_field,true); 
      34              :         
      35           18 :         pp_query_default("timestep", value.base_time, 1.0e-4); //Simulation timestep
      36           18 :         pp_query_default("pf.eps", value.pf.eps, 0.0); // Burn width thickness
      37           18 :         pp_query_default("pf.kappa", value.pf.kappa, 0.0); // Interface energy param
      38           18 :         pp_query_default("pf.gamma", value.pf.gamma, 1.0); // Scaling factor for mobility
      39           18 :         pp_query_default("pf.lambda", value.pf.lambda, 0.0); // Chemical potential multiplier
      40           18 :         pp_query_default("pf.w1", value.pf.w1, 0.0); // Unburned rest energy
      41           18 :         pp_query_default("pf.w12", value.pf.w12, 0.0);  // Barrier energy
      42           18 :         pp_query_default("pf.w0", value.pf.w0, 0.0);    // Burned rest energy
      43           18 :         pp_query_default("amr.ghost_cells", value.ghost_count, 2); // number of ghost cells in all fields
      44           18 :         pp_query_default("geometry.x_len", value.x_len, 0.001); // Domain x length
      45           15 :         pp_query_default("geometry.y_len", value.y_len, 0.001); // Domain y length
      46              : 
      47              :         //value.bc_eta = new BC::Constant(1);
      48              : 
      49              : 
      50              :         // Boundary conditions for phase field order params
      51            6 :         pp.select<BC::Constant>("pf.eta.bc", value.bc_eta, 1 ); 
      52            9 :         value.RegisterNewFab(value.eta_mf, value.bc_eta, 1, value.ghost_count, "eta", true);
      53            9 :         value.RegisterNewFab(value.eta_old_mf, value.bc_eta, 1, value.ghost_count, "eta_old", false);
      54              : 
      55              :         // phase field initial condition
      56            9 :         pp.select<IC::Laminate,IC::Constant,IC::Expression,IC::BMP,IC::PNG>("pf.eta.ic",value.ic_eta,value.geom); 
      57           24 :         pp.forbid("eta.ic","--> you must use pf.eta.ic instead"); // delete this eventually once all tests are updated
      58              :     }
      59              : 
      60              :     {
      61              :         //IO::ParmParse pp("thermal");
      62           18 :         pp_query_default("thermal.on", value.thermal.on, false); // Whether to use the Thermal Transport Model
      63           18 :         pp_query_default("elastic.on", value.elastic.on, 0); // Whether to use Neo-hookean Elastic model
      64           18 :         pp_query_default("thermal.bound", value.thermal.bound, 0.0); // System Initial Temperature
      65           18 :         pp_query_default("elastic.traction", value.elastic.traction, 0.0); // Body force
      66           15 :         pp_query_default("elastic.phirefinement", value.elastic.phirefinement, 1); // Phi refinement criteria 
      67              : 
      68              : 
      69              : 
      70            3 :         if (value.thermal.on) {
      71            6 :             pp_query_required("thermal.rho_ap", value.thermal.rho_ap); // AP Density
      72            6 :             pp_query_required("thermal.rho_htpb", value.thermal.rho_htpb); // HTPB Density
      73            6 :             pp_query_required("thermal.k_ap", value.thermal.k_ap); // AP Thermal Conductivity
      74            6 :             pp_query_required("thermal.k_htpb", value.thermal.k_htpb); // HTPB Thermal Conductivity
      75            6 :             pp_query_required("thermal.cp_ap", value.thermal.cp_ap); // AP Specific Heat
      76            6 :             pp_query_required("thermal.cp_htpb", value.thermal.cp_htpb); //HTPB Specific Heat
      77              : 
      78            6 :             pp_query_default("thermal.q0", value.thermal.q0, 0.0); // Baseline heat flux
      79              : 
      80            6 :             pp_query_required("thermal.m_ap", value.thermal.m_ap); // AP Pre-exponential factor for Arrhenius Law
      81            6 :             pp_query_required("thermal.m_htpb", value.thermal.m_htpb); // HTPB Pre-exponential factor for Arrhenius Law
      82            6 :             pp_query_required("thermal.E_ap", value.thermal.E_ap); // AP Activation Energy for Arrhenius Law
      83            6 :             pp_query_required("thermal.E_htpb", value.thermal.E_htpb); // HTPB Activation Energy for Arrhenius Law
      84              : 
      85            6 :             pp_query_default("thermal.hc", value.thermal.hc, 1.0); // Used to change heat flux units
      86            6 :             pp_query_default("thermal.massfraction", value.thermal.massfraction, 0.8); // Systen AP mass fraction
      87            6 :             pp_query_default("thermal.mlocal_ap", value.thermal.mlocal_ap, 0.0); // AP mass flux reference value 
      88            7 :             pp_query_default("thermal.mlocal_htpb", value.thermal.mlocal_htpb, 0.0); // HTPB mass flux reference value 
      89            6 :             pp_query_default("thermal.mlocal_comb", value.thermal.mlocal_comb, 0.0); // AP/HTPB mass flux reference value 
      90              : 
      91            5 :             pp_query_default("thermal.T_fluid", value.thermal.T_fluid, 300.0); // Temperature of the Standin Fluid 
      92              : 
      93            1 :             pp_query("thermal.disperssion1", value.thermal.disperssion1); // K; dispersion variables are use to set the outter field properties for the void grain case.
      94            1 :             pp_query("thermal.disperssion2", value.thermal.disperssion2); // rho; dispersion variables are use to set the outter field properties for the void grain case.
      95            1 :             pp_query("thermal.disperssion3", value.thermal.disperssion3); // cp; dispersion variables are use to set the outter field properties for the void grain case.
      96              : 
      97            6 :             pp_query_default("thermal.modeling_ap", value.thermal.modeling_ap, 1.0); // Scaling factor for AP thermal conductivity (default = 1.0)
      98            5 :             pp_query_default("thermal.modeling_htpb", value.thermal.modeling_htpb, 1.0); // Scaling factor for HTPB thermal conductivity (default = 1.0)
      99              : 
     100              : 
     101              :             //Temperature boundary condition
     102            2 :             pp.select_default<BC::Constant>("thermal.temp.bc", value.bc_temp, 1);
     103              :             
     104            3 :             value.RegisterNewFab(value.temp_mf, value.bc_temp, 1, value.ghost_count + 1, "temp", true);
     105            3 :             value.RegisterNewFab(value.temp_old_mf, value.bc_temp, 1, value.ghost_count + 1, "temp_old", false);
     106            3 :             value.RegisterNewFab(value.temps_mf, value.bc_temp, 1, value.ghost_count + 1, "temps", false);
     107            3 :             value.RegisterNewFab(value.temps_old_mf, value.bc_temp, 1, value.ghost_count + 1, "temps_old", false);
     108              : 
     109            3 :             value.RegisterNewFab(value.mdot_mf, value.bc_eta, 1, value.ghost_count + 1, "mdot", value.plot_field);
     110            3 :             value.RegisterNewFab(value.mob_mf, value.bc_eta, 1, value.ghost_count + 1, "mob", value.plot_field);
     111            3 :             value.RegisterNewFab(value.alpha_mf, value.bc_temp, 1, value.ghost_count + 1, "alpha", value.plot_field);
     112            3 :             value.RegisterNewFab(value.heatflux_mf, value.bc_temp, 1, value.ghost_count + 1, "heatflux", value.plot_field);
     113            3 :             value.RegisterNewFab(value.laser_mf, value.bc_temp, 1, value.ghost_count + 1, "laser", value.plot_field);
     114              : 
     115            2 :             value.RegisterIntegratedVariable(&value.volume, "total_area");
     116            2 :             value.RegisterIntegratedVariable(&value.area, "Interface_area");
     117            2 :             value.RegisterIntegratedVariable(&value.chamber_area, "chamber_area", false);
     118            2 :             value.RegisterIntegratedVariable(&value.massflux, "mass_flux");
     119            2 :             value.RegisterIntegratedVariable(&value.chamber_pressure, "Pressure", false);
     120              : 
     121              :             // laser initial condition
     122            2 :             pp.select_default<IC::Constant,IC::Expression>("laser.ic",value.ic_laser, value.geom);
     123              : 
     124              :             // thermal initial condition
     125            3 :             pp.select_default<IC::Constant,IC::Expression,IC::BMP,IC::PNG>("temp.ic",value.thermal.ic_temp,value.geom);
     126              :         }
     127              :     }
     128              : 
     129              :     {
     130           15 :         pp_query_default("pressure.P", value.pressure.P, 1.0); // Constant pressure value
     131            3 :         if (value.thermal.on)
     132              :         {
     133            6 :             pp_query_required("pressure.a1", value.pressure.arrhenius.a1); // Surgate heat flux model paramater - AP
     134            6 :             pp_query_required("pressure.a2", value.pressure.arrhenius.a2); // Surgate heat flux model paramater - HTPB
     135            6 :             pp_query_required("pressure.a3", value.pressure.arrhenius.a3); // Surgate heat flux model paramater - Total
     136            6 :             pp_query_required("pressure.b1", value.pressure.arrhenius.b1); // Surgate heat flux model paramater - AP
     137            6 :             pp_query_required("pressure.b2", value.pressure.arrhenius.b2); // Surgate heat flux model paramater - HTPB
     138            6 :             pp_query_required("pressure.b3", value.pressure.arrhenius.b3); // Surgate heat flux model paramater - Total
     139            6 :             pp_query_required("pressure.c1", value.pressure.arrhenius.c1); // Surgate heat flux model paramater - Total
     140            6 :             pp_query_default("pressure.mob_ap", value.pressure.arrhenius.mob_ap, 0); // Whether to include pressure to the arrhenius law
     141            6 :             pp_query_default("pressure.dependency", value.pressure.arrhenius.dependency, 1); // Whether to use pressure to determined the reference Zeta 
     142            6 :             pp_query_default("pressure.h1", value.pressure.arrhenius.h1, 1.81); // Surgate heat flux model paramater - Homogenized
     143            6 :             pp_query_default("pressure.h2", value.pressure.arrhenius.h2, 1.34); // Surgate heat flux model paramater - Homogenized
     144              : 
     145              :         }
     146              :         else
     147              :         {
     148           12 :             pp_query_required("pressure.r_ap", value.pressure.power.r_ap);     // AP power pressure law parameter (r*P^n)
     149           12 :             pp_query_required("pressure.r_htpb", value.pressure.power.r_htpb); // HTPB power pressure law parameter (r*P^n)
     150           12 :             pp_query_required("pressure.r_comb", value.pressure.power.r_comb); // AP/HTPB power pressure law parameter (r*P^n)
     151           12 :             pp_query_required("pressure.n_ap", value.pressure.power.n_ap);     // AP power pressure law parameter (r*P^n)
     152           12 :             pp_query_required("pressure.n_htpb", value.pressure.power.n_htpb); // HTPB power pressure law parameter (r*P^n)
     153           12 :             pp_query_required("pressure.n_comb", value.pressure.power.n_comb); // AP/HTPB power pressure law parameter (r*P^n)
     154              :         }
     155           18 :         pp_query_default("variable_pressure", value.variable_pressure, 0); // Whether to compute the pressure evolution
     156           18 :         pp_query_default("homogeneousSystem", value.homogeneousSystem, 0); // Whether to initialize Phi with homogenized properties
     157              :     }
     158              : 
     159           18 :     pp_query_default("amr.refinement_criterion", value.m_refinement_criterion, 0.001);// Refinement criterion for eta field   
     160           18 :     pp_query_default("amr.refinement_criterion_temp", value.t_refinement_criterion, 0.001);// Refinement criterion for temperature field    
     161           18 :     pp_query_default("amr.refinament_restriction", value.t_refinement_restriction, 0.1);// Eta value to restrict the refinament for the temperature field 
     162           18 :     pp_query_default("amr.phi_refinement_criterion", value.phi_refinement_criterion, 1.0e100);// Refinement criterion for phi field [infinity]
     163           18 :     pp_query_default("small", value.small, 1.0e-8); // Lowest value of Eta.
     164              : 
     165              :     {
     166              :         // The material field is referred to as :math:`\phi(\mathbf{x})` and is 
     167              :         // specified using these parameters. 
     168            6 :         std::string phi_ic_type = "packedspheres";
     169           21 :         pp_query_validate("phi.ic.type", phi_ic_type, {"psread", "laminate", "expression", "constant", "bmp", "png"}); // IC type (psread, laminate, constant)
     170            3 :         if (phi_ic_type == "psread") {
     171            0 :             value.ic_phi = new IC::PSRead(value.geom, pp, "phi.ic.psread");
     172              :             //value.ic_phicell = new IC::PSRead(value.geom, pp, "phi.ic.psread");
     173            0 :             pp_query_default("phi.ic.psread.eps", value.zeta, 1.0e-5); // AP/HTPB interface length
     174            0 :             pp_query_default("phi.zeta_0", value.zeta_0, 1.0e-5); // Reference interface length for heat integration
     175              :         }
     176            3 :         else if (phi_ic_type == "laminate") {
     177            9 :             value.ic_phi = new IC::Laminate(value.geom, pp, "phi.ic.laminate");
     178              :             //value.ic_phicell = new IC::Laminate(value.geom, pp, "phi.ic.laminate");
     179           18 :             pp_query_default("phi.ic.laminate.eps", value.zeta, 1.0e-5); // AP/HTPB interface length
     180           18 :             pp_query_default("phi.zeta_0", value.zeta_0, 1.0e-5); // Reference interface length for heat integration
     181              :         }
     182            0 :         else if (phi_ic_type == "expression") {
     183            0 :             value.ic_phi = new IC::Expression(value.geom, pp, "phi.ic.expression");
     184              :             //value.ic_phicell = new IC::Expression(value.geom, pp, "phi.ic.expression");
     185            0 :             pp_query_default("phi.zeta_0", value.zeta_0, 1.0e-5); // Reference interface length for heat integration
     186            0 :             pp_query_default("phi.zeta", value.zeta, 1.0e-5); // AP/HTPB interface length
     187              :         }
     188            0 :         else if (phi_ic_type == "constant") {
     189            0 :             value.ic_phi = new IC::Constant(value.geom, pp, "phi.ic.constant");
     190              :             //value.ic_phicell = new IC::Constant(value.geom, pp, "phi.ic.constant");
     191            0 :             pp_query_default("phi.zeta_0", value.zeta_0, 1.0e-5); // Reference interface length for heat integration
     192            0 :             pp_query_default("phi.zeta", value.zeta, 1.0e-5); // AP/HTPB interface length
     193              :         }
     194            0 :         else if (phi_ic_type == "bmp") {
     195            0 :             value.ic_phi = new IC::BMP(value.geom, pp, "phi.ic.bmp");
     196              :             //value.ic_phicell = new IC::BMP(value.geom, pp, "phi.ic.bmp");
     197            0 :             pp_query_default("phi.zeta_0", value.zeta_0, 1.0e-5); // Reference interface length for heat integration
     198            0 :             pp_query_default("phi.zeta", value.zeta, 1.0e-5); // AP/HTPB interface length
     199              :         }
     200            0 :         else if (phi_ic_type == "png") {
     201            0 :             value.ic_phi = new IC::PNG(value.geom, pp, "phi.ic.png");
     202            0 :             pp_query_default("phi.zeta_0", value.zeta_0, 1.0e-5); // Reference interface length for heat integration
     203            0 :             pp_query_default("phi.zeta", value.zeta, 1.0e-5); // AP/HTPB interface length
     204              :         }
     205            0 :         else Util::Abort(INFO, "Invalid IC type ", phi_ic_type);
     206              :         //value.RegisterNewFab(value.phi_mf, 1, "phi_cell", true);
     207            9 :         value.RegisterNodalFab(value.phi_mf, 1, value.ghost_count + 1, "phi", true);
     208              :         //value.RegisterNewFab(value.phicell_mf, value.bc_eta, 1, value.ghost_count + 1, "phi", true);
     209            3 :     }
     210              : 
     211           15 :     pp.queryclass<Base::Mechanics<model_type>>("elastic",value);
     212              : 
     213            3 :     if (value.m_type != Type::Disable)
     214              :     {
     215            0 :         value.elastic.Tref = value.thermal.bound;
     216            0 :         pp_query_default("Tref", value.elastic.Tref, 300.0); // Initial temperature for thermal expansion computation
     217            0 :         pp.queryclass<Model::Solid::Finite::NeoHookeanPredeformed>("model_ap", value.elastic.model_ap);
     218            0 :         pp.queryclass<Model::Solid::Finite::NeoHookeanPredeformed>("model_htpb", value.elastic.model_htpb);
     219              : 
     220            0 :         value.bc_psi = new BC::Nothing();
     221            0 :         value.RegisterNewFab(value.psi_mf, value.bc_psi, 1, value.ghost_count, "psi", value.plot_psi);
     222            0 :         value.psi_on = true;
     223              :     }
     224              : 
     225              :     bool allow_unused;
     226              :     // Set this to true to allow unused inputs without error.
     227              :     // (Not recommended.)
     228           15 :     pp.query_default("allow_unused",allow_unused,false);
     229            3 :     if (!allow_unused && pp.AnyUnusedInputs())
     230              :     {
     231            0 :         Util::Warning(INFO,"The following inputs were specified but not used:");
     232            0 :         pp.AllUnusedInputs();
     233            0 :         Util::Exception(INFO,"Aborting. Specify 'allow_unused=True` to ignore this error.");
     234              :     }
     235              :         
     236            3 : }
     237              : 
     238           24 : void Flame::Initialize(int lev)
     239              : {
     240              :     BL_PROFILE("Integrator::Flame::Initialize");
     241           24 :     Base::Mechanics<model_type>::Initialize(lev);
     242              : 
     243           24 :     ic_eta->Initialize(lev, eta_mf);
     244           24 :     ic_eta->Initialize(lev, eta_old_mf);
     245           24 :     ic_phi->Initialize(lev, phi_mf);
     246              :     //ic_phicell->Initialize(lev, phicell_mf);
     247              : 
     248           24 :     if (elastic.on) {
     249            0 :         psi_mf[lev]->setVal(1.0);
     250            0 :         rhs_mf[lev]->setVal(Set::Vector::Zero());
     251              :     }
     252           24 :     if (thermal.on) {
     253            8 :         if (thermal.ic_temp)
     254              :         {
     255            8 :             thermal.ic_temp->Initialize(lev,temp_mf);
     256            8 :             thermal.ic_temp->Initialize(lev,temp_old_mf);
     257            8 :             thermal.ic_temp->Initialize(lev,temps_mf);
     258            8 :             thermal.ic_temp->Initialize(lev,temps_old_mf);
     259              :         }
     260              :         else
     261              :         {
     262            0 :             temp_mf[lev]->setVal(thermal.bound);
     263            0 :             temp_old_mf[lev]->setVal(thermal.bound);
     264            0 :             temps_mf[lev]->setVal(thermal.bound);
     265            0 :             temps_old_mf[lev]->setVal(thermal.bound);
     266              :         }
     267            8 :         alpha_mf[lev]->setVal(0.0);
     268            8 :         mob_mf[lev]->setVal(0.0);
     269            8 :         mdot_mf[lev]->setVal(0.0);
     270            8 :         heatflux_mf[lev]->setVal(0.0);
     271              :         // pressure_mf[lev]->setVal(1.0); // [error]
     272            8 :         thermal.w1 = 0.2 * pressure.P + 0.9;
     273            8 :         thermal.T_fluid = thermal.bound;
     274            8 :         ic_laser->Initialize(lev, laser_mf);
     275            8 :         thermal.mlocal_htpb = 685000.0 - 850e3 * thermal.massfraction;
     276              :     }
     277           24 :     if (variable_pressure) pressure.P = 1.0;
     278           24 : }
     279              : 
     280            0 : void Flame::UpdateModel(int /*a_step*/, Set::Scalar /*a_time*/)
     281              : {
     282            0 :     if (m_type == Base::Mechanics<model_type>::Type::Disable) return;
     283              : 
     284            0 :     for (int lev = 0; lev <= finest_level; ++lev)
     285              :     {
     286            0 :         amrex::Box domain = this->geom[lev].Domain();
     287            0 :         domain.convert(amrex::IntVect::TheNodeVector());
     288            0 :         const Set::Scalar* DX = geom[lev].CellSize();
     289              : 
     290              :         //psi_mf[lev]->setVal(1.0);
     291            0 :         phi_mf[lev]->FillBoundary();
     292              :         //phicell_mf[lev]->FillBoundary();
     293            0 :         eta_mf[lev]->FillBoundary();
     294            0 :         temp_mf[lev]->FillBoundary();
     295              : 
     296            0 :         for (MFIter mfi(*model_mf[lev], false); mfi.isValid(); ++mfi)
     297              :         {
     298            0 :             amrex::Box smallbox = mfi.nodaltilebox();
     299            0 :             amrex::Box bx = mfi.grownnodaltilebox() & domain;
     300              :             //amrex::Box bx = mfi.nodaltilebox();
     301              :             //bx.grow(1);
     302            0 :             amrex::Array4<model_type>        const& model = model_mf[lev]->array(mfi);
     303            0 :             amrex::Array4<const Set::Scalar> const& phi = phi_mf[lev]->array(mfi);
     304            0 :             amrex::Array4<const Set::Scalar> const& eta = eta_mf[lev]->array(mfi);
     305            0 :             amrex::Array4<Set::Vector> const& rhs = rhs_mf[lev]->array(mfi);
     306              :             // amrex::Array4<const Set::Scalar> const& Pressure = pressure_mf[lev]->array(mfi); // [error]
     307              : 
     308            0 :             if (elastic.on)
     309              :             {
     310            0 :                 amrex::Array4<const Set::Scalar> const& temp = temp_mf[lev]->array(mfi);
     311            0 :                 amrex::ParallelFor(smallbox, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     312              :                 {
     313            0 :                     Set::Vector grad_eta = Numeric::CellGradientOnNode(eta, i, j, k, 0, DX);
     314            0 :                     rhs(i, j, k) = elastic.traction * grad_eta;
     315            0 :                 });
     316            0 :                 amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     317              :                 {
     318            0 :                     Set::Scalar phi_avg = phi(i, j, k, 0);
     319            0 :                     Set::Scalar temp_avg = Numeric::Interpolate::CellToNodeAverage(temp, i, j, k, 0);
     320            0 :                     model_type model_ap = elastic.model_ap;
     321            0 :                     model_ap.F0 -= Set::Matrix::Identity();
     322            0 :                     model_ap.F0 *= (temp_avg - elastic.Tref);
     323            0 :                     model_ap.F0 += Set::Matrix::Identity();
     324            0 :                     model_type model_htpb = elastic.model_htpb;
     325            0 :                     model_htpb.F0 -= Set::Matrix::Identity();
     326            0 :                     model_htpb.F0 *= (temp_avg - elastic.Tref);
     327            0 :                     model_htpb.F0 += Set::Matrix::Identity();
     328              : 
     329            0 :                     model(i, j, k) = model_ap * phi_avg + model_htpb * (1. - phi_avg);
     330            0 :                 });
     331              :             }
     332              :             else
     333              :             {
     334            0 :                 amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     335              :                 {
     336            0 :                     Set::Scalar phi_avg = Numeric::Interpolate::CellToNodeAverage(phi, i, j, k, 0);
     337              :                     //phi_avg = phi(i,j,k,0);
     338            0 :                     model_type model_ap = elastic.model_ap;
     339            0 :                     model_ap.F0 *= Set::Matrix::Zero();
     340            0 :                     model_type model_htpb = elastic.model_htpb;
     341            0 :                     model_htpb.F0 *= Set::Matrix::Zero();
     342            0 :                     model(i, j, k) = model_ap * phi_avg + model_htpb * (1. - phi_avg);
     343            0 :                 });
     344              :             }
     345            0 :         }
     346            0 :         Util::RealFillBoundary(*model_mf[lev], geom[lev]);
     347              : 
     348            0 :         psi_mf[lev]->setVal(1.0);
     349            0 :         amrex::MultiFab::Copy(*psi_mf[lev], *eta_mf[lev], 0, 0, 1, psi_mf[lev]->nGrow());
     350              :     }
     351              : }
     352              : 
     353          212 : void Flame::TimeStepBegin(Set::Scalar a_time, int a_iter)
     354              : {
     355              :     BL_PROFILE("Integrator::Flame::TimeStepBegin");
     356          212 :     Base::Mechanics<model_type>::TimeStepBegin(a_time, a_iter);
     357          212 :     if (thermal.on) {
     358           90 :         for (int lev = 0; lev <= finest_level; ++lev)
     359           80 :             ic_laser->Initialize(lev, laser_mf, a_time);
     360              :     }
     361          212 : }
     362              : 
     363          212 : void Flame::TimeStepComplete(Set::Scalar /*a_time*/, int /*a_iter*/)
     364              : {
     365              :     BL_PROFILE("Integrator::Flame::TimeStepComplete");
     366          212 :     if (variable_pressure) {
     367            0 :         Set::Scalar domain_area = x_len * y_len;
     368            0 :         chamber_pressure = pressure.P;
     369            0 :         chamber_area = domain_area - volume;
     370            0 :         Util::Message(INFO, "Mass = ", massflux);
     371            0 :         Util::Message(INFO, "Pressure = ", pressure.P);
     372              :     }
     373          212 : }
     374              : 
     375        54060 : void Flame::Advance(int lev, Set::Scalar time, Set::Scalar dt)
     376              : {
     377              :     BL_PROFILE("Integrador::Flame::Advance");
     378        54060 :     Base::Mechanics<model_type>::Advance(lev, time, dt);
     379        54060 :     const Set::Scalar* DX = geom[lev].CellSize();
     380              : 
     381              :     if (true) //lev == finest_level) //(true)
     382              :     {
     383        54060 :         if (thermal.on)
     384              :         {
     385         2550 :             std::swap(eta_old_mf[lev], eta_mf[lev]);
     386         2550 :             std::swap(temp_old_mf[lev], temp_mf[lev]);
     387         2550 :             std::swap(temps_old_mf[lev], temps_mf[lev]);
     388              : 
     389              :             Numeric::Function::Polynomial<4> w(pf.w0,
     390              :                 0.0,
     391         2550 :                 -5.0 * pf.w1 + 16.0 * pf.w12 - 11.0 * pf.w0,
     392         2550 :                 14.0 * pf.w1 - 32.0 * pf.w12 + 18.0 * pf.w0,
     393         2550 :                 -8.0 * pf.w1 + 16.0 * pf.w12 - 8.0 * pf.w0);
     394         2550 :             Numeric::Function::Polynomial<3> dw = w.D();
     395              : 
     396        13100 :             for (amrex::MFIter mfi(*eta_mf[lev], true); mfi.isValid(); ++mfi)
     397              :             {
     398        10550 :                 const amrex::Box& bx = mfi.tilebox();
     399              :                 // Phase fields
     400        10550 :                 amrex::Array4<Set::Scalar> const& etanew = (*eta_mf[lev]).array(mfi);
     401        10550 :                 amrex::Array4<const Set::Scalar> const& eta = (*eta_old_mf[lev]).array(mfi);
     402        10550 :                 amrex::Array4<const Set::Scalar> const& phi = (*phi_mf[lev]).array(mfi);
     403              :                 //amrex::Array4<const Set::Scalar> const& phicell = (*phicell_mf[lev]).array(mfi);
     404              :                 // Heat transfer fields
     405        10550 :                 amrex::Array4<Set::Scalar>       const& tempnew = (*temp_mf[lev]).array(mfi);
     406        10550 :                 amrex::Array4<const Set::Scalar> const& temp = (*temp_old_mf[lev]).array(mfi);
     407        10550 :                 amrex::Array4<Set::Scalar>       const& alpha = (*alpha_mf[lev]).array(mfi);
     408        10550 :                 amrex::Array4<Set::Scalar>       const& tempsnew = (*temps_mf[lev]).array(mfi);
     409        10550 :                 amrex::Array4<Set::Scalar>       const& temps = (*temps_old_mf[lev]).array(mfi);
     410        10550 :                 amrex::Array4<Set::Scalar>       const& laser = (*laser_mf[lev]).array(mfi);
     411              :                 // Diagnostic fields
     412        10550 :                 amrex::Array4<Set::Scalar> const& mob = (*mob_mf[lev]).array(mfi);
     413        10550 :                 amrex::Array4<Set::Scalar> const& mdot = (*mdot_mf[lev]).array(mfi);
     414        10550 :                 amrex::Array4<Set::Scalar> const& heatflux = (*heatflux_mf[lev]).array(mfi);
     415              : 
     416        10550 :                 if (variable_pressure) {
     417            0 :                     pressure.P = exp(0.00075 * massflux);
     418            0 :                     if (pressure.P > 10.0) {
     419            0 :                         pressure.P = 10.0;
     420              :                     }
     421            0 :                     else if (pressure.P <= 0.99) {
     422            0 :                         pressure.P = 0.99;
     423              :                     }
     424            0 :                     elastic.traction = pressure.P;
     425              : 
     426              :                 }
     427              : 
     428        10550 :                 Set::Scalar zeta_2 = 0.000045 - pressure.P * 6.42e-6;
     429              :                 Set::Scalar zeta_1;
     430        10550 :                 if (pressure.arrhenius.dependency == 1) zeta_1 = zeta_2;
     431            0 :                 else zeta_1 = zeta_0;
     432              : 
     433        10550 :                 Set::Scalar k1 = pressure.arrhenius.a1 * pressure.P + pressure.arrhenius.b1 - zeta_1 / zeta;
     434        10550 :                 Set::Scalar k2 = pressure.arrhenius.a2 * pressure.P + pressure.arrhenius.b2 - zeta_1 / zeta;
     435        10550 :                 Set::Scalar k3 = 4.0 * log((pressure.arrhenius.c1 * pressure.P * pressure.P + pressure.arrhenius.a3 * pressure.P + pressure.arrhenius.b3) - k1 / 2.0 - k2 / 2.0);
     436        10550 :                 Set::Scalar k4 = pressure.arrhenius.h1 * pressure.P + pressure.arrhenius.h2;
     437              : 
     438        10550 :                 amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     439              :                 {
     440      1747840 :                     Set::Scalar phi_avg = Numeric::Interpolate::NodeToCellAverage(phi, i, j, k, 0);
     441      1747840 :                     Set::Scalar eta_lap = Numeric::Laplacian(eta, i, j, k, 0, DX);
     442              :                     Set::Scalar K; // Calculate effective thermal conductivity
     443              :                     Set::Scalar rho; // No special interface mixure rule is needed here.
     444              :                     Set::Scalar cp;
     445      1747840 :                     if (homogeneousSystem) {
     446            0 :                         K = (thermal.modeling_ap * thermal.k_ap * thermal.massfraction + thermal.modeling_htpb * thermal.k_htpb * (1.0 - thermal.massfraction)) * phi_avg + thermal.disperssion1 * (1. - phi_avg); // Calculate effective thermal conductivity
     447            0 :                         rho = (thermal.rho_ap * thermal.massfraction + thermal.rho_htpb * (1.0 - thermal.massfraction)) * phi_avg + thermal.disperssion2 * (1. - phi_avg); // No special interface mixure rule is needed here.
     448            0 :                         cp = (thermal.cp_ap * thermal.massfraction + thermal.cp_htpb * (1.0 - thermal.massfraction)) * phi_avg + thermal.disperssion3 * (1. - phi_avg);
     449              :                     }
     450              :                     else {
     451      1747840 :                         K = thermal.modeling_ap * thermal.k_ap * phi_avg + thermal.modeling_htpb * thermal.k_htpb * (1.0 - phi_avg); // Calculate effective thermal conductivity
     452      1747840 :                         rho = thermal.rho_ap * phi_avg + thermal.rho_htpb * (1.0 - phi_avg); // No special interface mixure rule is needed here.
     453      1747840 :                         cp = thermal.cp_ap * phi_avg + thermal.cp_htpb * (1.0 - phi_avg);
     454              :                     }
     455      3495680 :                     Set::Scalar df_deta = ((pf.lambda / pf.eps) * dw(eta(i, j, k)) - pf.eps * pf.kappa * eta_lap);
     456      5243520 :                     etanew(i, j, k) = eta(i, j, k) - mob(i, j, k) * dt * df_deta;
     457      3495680 :                     if (etanew(i, j, k) <= small) etanew(i, j, k) = small;
     458              : 
     459      1747840 :                     alpha(i, j, k) = K / rho / cp; // Calculate thermal diffusivity and store in fiel
     460      5243520 :                     mdot(i, j, k) = rho * fabs(eta(i, j, k) - etanew(i, j, k)) / dt; // deta/dt  
     461              : 
     462      6991360 :                     if (isnan(etanew(i, j, k)) || isnan(alpha(i, j, k)) || isnan(mdot(i, j, k))) {
     463            0 :                         Util::Message(INFO, etanew(i, j, k), "etanew contains nan (i=", i, " j= ", j, ")");
     464            0 :                         Util::Message(INFO, mdot(i, j, k), "mdot contains nan (i=", i, " j= ", j, ")");
     465            0 :                         Util::Message(INFO, alpha(i, j, k), "alpha contains nan (i=", i, " j= ", j, ")");
     466            0 :                         Util::Abort(INFO);
     467              :                     }
     468      1747840 :                 });
     469              : 
     470        10550 :                 amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     471              :                 {
     472      1747840 :                     Set::Scalar phi_avg = Numeric::Interpolate::NodeToCellAverage(phi, i, j, k, 0);
     473              :                     //phi_avg = phicell(i,j,k);
     474              :                     Set::Scalar K;
     475              :                     Set::Scalar qflux;
     476              :                     Set::Scalar mlocal;
     477              :                     Set::Scalar mdota;
     478              :                     Set::Scalar mbase;
     479              : 
     480      1747840 :                     if (homogeneousSystem) {
     481            0 :                         qflux = k4 * phi_avg;
     482            0 :                         mlocal = (thermal.mlocal_ap) * thermal.massfraction + (thermal.mlocal_htpb) * (1.0 - thermal.massfraction);
     483            0 :                         mdota = fabs(mdot(i, j, k));
     484            0 :                         mbase = tanh(4.0 * mdota / (mlocal));
     485            0 :                         K = (thermal.modeling_ap * thermal.k_ap * thermal.massfraction + thermal.modeling_htpb * thermal.k_htpb * (1.0 - thermal.massfraction)) * phi_avg + thermal.disperssion1 * (1. - phi_avg);
     486            0 :                         heatflux(i, j, k) = (laser(i, j, k) * phi_avg + thermal.hc * mbase * qflux) / K;
     487              :                     }
     488              :                     else {
     489      1747840 :                         qflux = k1 * phi_avg +
     490      1747840 :                             k2 * (1.0 - phi_avg) +
     491      1747840 :                             (zeta_1 / zeta) * exp(k3 * phi_avg * (1.0 - phi_avg));
     492      1747840 :                         mlocal = (thermal.mlocal_ap) * phi_avg + (thermal.mlocal_htpb) * (1.0 - phi_avg) + thermal.mlocal_comb * phi_avg * (1.0 - phi_avg);
     493      1747840 :                         mdota = fabs(mdot(i, j, k));
     494      1747840 :                         mbase = tanh(4.0 * mdota / (mlocal));
     495              : 
     496      1747840 :                         K = thermal.modeling_ap * thermal.k_ap * phi_avg + thermal.modeling_htpb * thermal.k_htpb * (1.0 - phi_avg);
     497      5243520 :                         heatflux(i, j, k) = (thermal.hc * mbase * qflux + laser(i, j, k)) / K;
     498              :                     }
     499              : 
     500      3495680 :                     if (isnan(heatflux(i, j, k))) {
     501            0 :                         Util::Message(INFO, heatflux(i, j, k), "heat contains nan (i=", i, " j= ", j, ")");
     502            0 :                         Util::Abort(INFO);
     503              :                     }
     504      1747840 :                 });
     505              : 
     506        10550 :                 amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     507              :                 {
     508      1747840 :                     auto sten = Numeric::GetStencil(i, j, k, bx);
     509      1747840 :                     Set::Vector grad_eta = Numeric::Gradient(eta, i, j, k, 0, DX);
     510      1747840 :                     Set::Vector grad_temp = Numeric::Gradient(temp, i, j, k, 0, DX);
     511      1747840 :                     Set::Scalar lap_temp = Numeric::Laplacian(temp, i, j, k, 0, DX);
     512      1747840 :                     Set::Scalar grad_eta_mag = grad_eta.lpNorm<2>();
     513      1747840 :                     Set::Vector grad_alpha = Numeric::Gradient(alpha, i, j, k, 0, DX, sten);
     514      1747840 :                     Set::Scalar dTdt = 0.0;
     515      3495680 :                     dTdt += grad_eta.dot(grad_temp * alpha(i, j, k));
     516      3495680 :                     dTdt += grad_alpha.dot(eta(i, j, k) * grad_temp);
     517      3495680 :                     dTdt += eta(i, j, k) * alpha(i, j, k) * lap_temp;
     518      3495680 :                     dTdt += alpha(i, j, k) * heatflux(i, j, k) * grad_eta_mag;
     519              :                     Set::Scalar Tsolid;
     520      5243520 :                     Tsolid = dTdt + temps(i, j, k) * (etanew(i, j, k) - eta(i, j, k)) / dt;
     521      3495680 :                     tempsnew(i, j, k) = temps(i, j, k) + dt * Tsolid;
     522      6991360 :                     tempnew(i, j, k) = etanew(i, j, k) * tempsnew(i, j, k) + (1.0 - etanew(i, j, k)) * thermal.T_fluid;
     523      5243520 :                     if (isnan(tempsnew(i, j, k)) || isnan(temps(i, j, k))) {
     524            0 :                         Util::Message(INFO, tempsnew(i, j, k), "tempsnew contains nan (i=", i, " j= ", j, ")");
     525            0 :                         Util::Message(INFO, temps(i, j, k), "temps contains nan (i=", i, " j= ", j, ")");
     526            0 :                         Util::Abort(INFO);
     527              :                     }
     528              : 
     529      1747840 :                 });
     530              : 
     531        10550 :                 amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     532              :                 {
     533      1747840 :                     Set::Scalar phi_avg = Numeric::Interpolate::NodeToCellAverage(phi, i, j, k, 0);
     534              :                     //phi_avg = phicell(i,j,k);
     535              : 
     536              :                     Set::Scalar L;
     537      1747840 :                     if (pressure.arrhenius.mob_ap == 1) L = thermal.m_ap * pressure.P * exp(-thermal.E_ap / tempnew(i, j, k)) * phi_avg;
     538      3495680 :                     else L = thermal.m_ap * exp(-thermal.E_ap / tempnew(i, j, k)) * phi_avg;
     539      1747840 :                     L += thermal.m_htpb * exp(-thermal.E_htpb / tempnew(i, j, k)) * (1.0 - phi_avg);
     540              :                     //L += thermal.m_comb * (0.5 * tempnew(i, j, k) / thermal.bound) * phi(i, j, k) * (1.0 - phi(i, j, k));
     541      3501038 :                     if (tempnew(i, j, k) <= thermal.bound) mob(i, j, k) = 0;
     542      3484964 :                     else mob(i, j, k) = L;
     543              :                     //mob(i,j,k) = L;
     544      3495680 :                     if (isnan(mob(i, j, k))) {
     545            0 :                         Util::Message(INFO, mob(i, j, k), "mob contains nan (i=", i, " j= ", j, ")");
     546            0 :                         Util::Abort(INFO);
     547              :                     }
     548      1747840 :                 });
     549         2550 :             } // MFi For loop 
     550              : 
     551              :         } // thermal IF
     552              :         else
     553              :         {
     554        51510 :             std::swap(eta_old_mf[lev], eta_mf[lev]);
     555              :             Numeric::Function::Polynomial<4> w(pf.w0,
     556              :                 0.0,
     557        51510 :                 -5.0 * pf.w1 + 16.0 * pf.w12 - 11.0 * pf.w0,
     558        51510 :                 14.0 * pf.w1 - 32.0 * pf.w12 + 18.0 * pf.w0,
     559        51510 :                 -8.0 * pf.w1 + 16.0 * pf.w12 - 8.0 * pf.w0
     560        51510 :             );
     561        51510 :             Numeric::Function::Polynomial<3> dw = w.D();
     562              : 
     563       149676 :             for (amrex::MFIter mfi(*eta_mf[lev], true); mfi.isValid(); ++mfi)
     564              :             {
     565        98166 :                 const amrex::Box& bx = mfi.tilebox();
     566              :                 //Phase Fields
     567        98166 :                 amrex::Array4<Set::Scalar> const& etanew = (*eta_mf[lev]).array(mfi);
     568        98166 :                 amrex::Array4<Set::Scalar> const& eta = (*eta_old_mf[lev]).array(mfi);
     569        98166 :                 amrex::Array4<Set::Scalar> const& phi = (*phi_mf[lev]).array(mfi);
     570              : 
     571        98166 :                 Set::Scalar fmod_ap = pressure.power.r_ap * pow(pressure.P, pressure.power.n_ap);
     572        98166 :                 Set::Scalar fmod_htpb = pressure.power.r_htpb * pow(pressure.P, pressure.power.n_htpb);
     573        98166 :                 Set::Scalar fmod_comb = pressure.power.r_comb * pow(pressure.P, pressure.power.n_comb);
     574              : 
     575        98166 :                 pressure.power.a_fit = -1.16582 * sin(pressure.P) - 0.681788 * cos(pressure.P) + 3.3563;
     576        98166 :                 pressure.power.b_fit = -0.708225 * sin(pressure.P) + 0.548067 * cos(pressure.P) + 1.55985;
     577        98166 :                 pressure.power.c_fit = -0.0130849 * sin(pressure.P) - 0.03597 * cos(pressure.P) + 0.00725694;
     578              : 
     579              : 
     580        98166 :                 amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     581              :                 {
     582              :                     //Set::Scalar phi_avg = Numeric::Interpolate::NodeToCellAverage(phi, i, j, k, 0);
     583              :                     Set::Scalar L;
     584     95048768 :                     if (homogeneousSystem == 1) {
     585            0 :                         Set::Vector grad_eta = Numeric::Gradient(eta, i, j, k, 0, DX);
     586            0 :                         Set::Scalar angle = acos(grad_eta[0] / grad_eta.lpNorm<2>()) * 180 / 3.1415;
     587            0 :                         if (angle > 90) angle = angle - 90.0;
     588            0 :                         if (angle > 180) angle = angle - 180.0;
     589            0 :                         if (angle > 270) angle = angle - 270.0;
     590            0 :                         L = pressure.power.a_fit + pressure.power.b_fit * exp(-pressure.power.c_fit * angle);
     591              :                     }
     592              :                     else {
     593              :                         Set::Scalar fs_actual;
     594     95048768 :                         fs_actual = fmod_ap * phi(i, j, k)
     595     95048768 :                             + fmod_htpb * (1.0 - phi(i, j, k))
     596    190097536 :                             + 4.0 * fmod_comb * phi(i, j, k) * (1.0 - phi(i, j, k));
     597     95048768 :                         L = fs_actual / pf.gamma / (pf.w1 - pf.w0);
     598              :                     }
     599     95048768 :                     Set::Scalar eta_lap = Numeric::Laplacian(eta, i, j, k, 0, DX);
     600    190097536 :                     Set::Scalar df_deta = ((pf.lambda / pf.eps) * dw(eta(i, j, k)) - pf.eps * pf.kappa * eta_lap);
     601    190097536 :                     etanew(i, j, k) = eta(i, j, k) - L * dt * df_deta;
     602              : 
     603    308123190 :                     if (etanew(i, j, k) > eta(i, j, k)) etanew(i, j, k) = eta(i, j, k);
     604     95048768 :                 });
     605        51510 :             } // MFI For Loop 
     606              :         } // thermal ELSE      
     607              :     }// First IF
     608        54060 : } //Function
     609              : 
     610              : 
     611          263 : void Flame::TagCellsForRefinement(int lev, amrex::TagBoxArray& a_tags, Set::Scalar time, int ngrow)
     612              : {
     613              :     BL_PROFILE("Integrator::Flame::TagCellsForRefinement");
     614          263 :     Base::Mechanics<model_type>::TagCellsForRefinement(lev, a_tags, time, ngrow);
     615              : 
     616          263 :     const Set::Scalar* DX = geom[lev].CellSize();
     617          263 :     Set::Scalar dr = sqrt(AMREX_D_TERM(DX[0] * DX[0], +DX[1] * DX[1], +DX[2] * DX[2]));
     618              : 
     619              :     // Eta criterion for refinement
     620          709 :     for (amrex::MFIter mfi(*eta_mf[lev], true); mfi.isValid(); ++mfi)
     621              :     {
     622          446 :         const amrex::Box& bx = mfi.tilebox();
     623          446 :         amrex::Array4<char> const& tags = a_tags.array(mfi);
     624          446 :         amrex::Array4<const Set::Scalar> const& eta = (*eta_mf[lev]).array(mfi);
     625              : 
     626          446 :         amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     627              :         {
     628        78848 :             Set::Vector gradeta = Numeric::Gradient(eta, i, j, k, 0, DX);
     629       103225 :             if (gradeta.lpNorm<2>() * dr * 2 > m_refinement_criterion && eta(i, j, k) >= t_refinement_restriction)
     630        47698 :                 tags(i, j, k) = amrex::TagBox::SET;
     631        78848 :         });
     632          263 :     }
     633              : 
     634              :     // Phi criterion for refinement 
     635          263 :     if (elastic.phirefinement) {
     636          709 :         for (amrex::MFIter mfi(*eta_mf[lev], true); mfi.isValid(); ++mfi)
     637              :         {
     638          446 :             const amrex::Box& bx = mfi.tilebox();
     639          446 :             amrex::Array4<char> const& tags = a_tags.array(mfi);
     640          446 :             amrex::Array4<const Set::Scalar> const& phi = (*phi_mf[lev]).array(mfi);
     641              : 
     642          446 :             amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     643              :             {
     644        78848 :                 Set::Vector gradphi = Numeric::Gradient(phi, i, j, k, 0, DX);
     645        78848 :                 if (gradphi.lpNorm<2>() * dr >= phi_refinement_criterion)
     646            0 :                     tags(i, j, k) = amrex::TagBox::SET;
     647        78848 :             });
     648          263 :         }
     649              :     }
     650              : 
     651              : 
     652              :     // Thermal criterion for refinement 
     653          263 :     if (thermal.on) {
     654          507 :         for (amrex::MFIter mfi(*temp_mf[lev], true); mfi.isValid(); ++mfi)
     655              :         {
     656          345 :             const amrex::Box& bx = mfi.tilebox();
     657          345 :             amrex::Array4<char> const& tags = a_tags.array(mfi);
     658          345 :             amrex::Array4<const Set::Scalar> const& temp = (*temp_mf[lev]).array(mfi);
     659          345 :             amrex::Array4<const Set::Scalar> const& eta = (*eta_mf[lev]).array(mfi);
     660          345 :             amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     661              :             {
     662        50928 :                 Set::Vector tempgrad = Numeric::Gradient(temp, i, j, k, 0, DX);
     663        50928 :                 if (tempgrad.lpNorm<2>() * dr > t_refinement_criterion && eta(i, j, k) >= t_refinement_restriction)
     664            0 :                     tags(i, j, k) = amrex::TagBox::SET;
     665        50928 :             });
     666          162 :         }
     667              :     }
     668              : 
     669              : 
     670          263 : }
     671              : 
     672           15 : void Flame::Regrid(int lev, Set::Scalar time)
     673              : {
     674              :     BL_PROFILE("Integrator::Flame::Regrid");
     675              :     //if (lev < finest_level) return;
     676              :     //phi_mf[lev]->setVal(0.0);
     677           15 :     ic_phi->Initialize(lev, phi_mf, time);
     678              :     //ic_phicell->Initialize(lev, phi_mf, time);
     679           15 : }
     680              : 
     681          220 : void Flame::Integrate(int amrlev, Set::Scalar /*time*/, int /*step*/,
     682              :     const amrex::MFIter& mfi, const amrex::Box& box)
     683              : {
     684              :     BL_PROFILE("Flame::Integrate");
     685          220 :     const Set::Scalar* DX = geom[amrlev].CellSize();
     686          220 :     Set::Scalar dv = AMREX_D_TERM(DX[0], *DX[1], *DX[2]);
     687          220 :     amrex::Array4<amrex::Real> const& eta = (*eta_mf[amrlev]).array(mfi);
     688          220 :     amrex::Array4<amrex::Real> const& mdot = (*mdot_mf[amrlev]).array(mfi);
     689          220 :     if (variable_pressure) {
     690            0 :         amrex::ParallelFor(box, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     691              :         {
     692            0 :             volume += eta(i, j, k, 0) * dv;
     693            0 :             Set::Vector grad = Numeric::Gradient(eta, i, j, k, 0, DX);
     694            0 :             Set::Scalar normgrad = grad.lpNorm<2>();
     695            0 :             Set::Scalar da = normgrad * dv;
     696            0 :             area += da;
     697              : 
     698            0 :             Set::Vector mgrad = Numeric::Gradient(mdot, i, j, k, 0, DX);
     699            0 :             Set::Scalar mnormgrad = mgrad.lpNorm<2>();
     700            0 :             Set::Scalar dm = mnormgrad * dv;
     701            0 :             massflux += dm;
     702              : 
     703            0 :         });
     704              :     }
     705              :     else {
     706          220 :         amrex::ParallelFor(box, [=] AMREX_GPU_DEVICE(int i, int j, int k)
     707              :         {
     708        15560 :             volume += eta(i, j, k, 0) * dv;
     709        15560 :             Set::Vector grad = Numeric::Gradient(eta, i, j, k, 0, DX);
     710        15560 :             Set::Scalar normgrad = grad.lpNorm<2>();
     711        15560 :             Set::Scalar da = normgrad * dv;
     712        15560 :             area += da;
     713        15560 :         });
     714              :     }
     715              :     // time dependent pressure data from experimenta -> p = 0.0954521220950523 * exp(15.289993148880678 * t)
     716          220 : }
     717              : } // namespace Integrator
     718              : 
     719              : 
        

Generated by: LCOV version 2.0-1